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What is a Muon?
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What is a Muon?

m
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Muon Properties
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What is a Muon?
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Cosmic Muons - “Space Par�cles & Pyramids”

m discovered 1936 by Anderson & Neddermeyer
who studied cosmic radiations

Khufu’s Pyramid (Cheops)
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Cosmic Muons - “Space Par�cles & Pyramids”

m discovered 1936 by Anderson & Neddermeyer
who studied cosmic radiations

Muon Detector

m m m m m
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Cosmic Muons - “Space Par�cles & Pyramids”

m discovered 1936 by Anderson & Neddermeyer
who studied cosmic radiations

Muon Detector

m m m m m

Imaging / Tomography

Morishima, et al.
Nature 552
386 (2017)

Khufu’s Pyramid (Cheops)
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Neutrons vs. Muons

⁰n m⁺
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Neutrons vs. Muons

⁰n m⁺
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Neutrons vs. Muons

Mass ~ 1 u

Charge = 0

Life-time ~ 800 s

g = 29.16 MHz/T

Mass ~ 1/9 u

Charge = +/-

Life-time ~ 2.2 ms

g = 135.54 MHz/T

S = 1/2 S = 1/2“Long-range” “Local / short-range”

⁰n m⁺
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Muon Produc�on

High-energy
proton (500 eV)

Production
Target

(Carbon Nuclei)

+
Muon (m )

E  = 4.1 MeVm

p  = 29.8 MeV/cm

t  = 2.2 msm

+
Pion (p )

E  = 0, p  = 0p p
("at rest")

J = 0

t  = 26 nsp

Neutrino (n )m

Pion initially at rest

Conservation of linear
and angular momentum

Muon and Neutrino are emitted with
equal and opposite  momenta (p) and 

also equal and opposite spin !!!

Parity violation (weak interaction decay)
gives only left-handed neutrinos Þ

Muons are ‘born’ 100% spin polarized with 

their spin (s ) & momenta (p ) opposite.m m
E

S
S

E
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T
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Muon Decay (death of the muon)

 = tm

sm

q

a = 1
a = 1/3

+m

The Muons decay into neutrino/antineutrino and a  by exponential decay:positron

    with half-life   t  = 2.2 ms mN(t) = B + N  exp ( t /t  )0 m

 the positron is emitted anisotropically andParity violation:
with a maximum probability in the direction of the muon
spin. The angular distribution of emitted positrons:

When all positron energies are sampled with equal probability
("real life")  i.e. it is  that the positrona = 1/3 twice as probable
is along as opposite the .muon spin direction

W(E,q) ~ 1 + a(E) * cos q

The spatial (asymmetric) positron emission as a function of  time, 
"directly gives you the time evolution of the muon spin direction !!!

m
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+The m SR Experiment

Any magnetic field (B) not parallel to S  gives muon (Larmor) precession with a frequency:m

Start Start

StopStop

Sample B

P(t=0) P(t)

Backward
Positron
Counter

Forward
Positron
Counter

Muon
Counter

+
m

q

B
mS

w = g ·Bm

giving the magnetic field ( ). Data analyzed in time domain ( ) or by Fourier Transform.B Asymmetry
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Forward / Backward Asymmetry Plot (= mSR data or �me-spectrum)

If muons are implanted in an "inert" material (no
magnetic moments) the polarization of the muon
is unaffected. Hence, the  positron is ~twice as

probable to be ejected and detected  in the
"Backward" positron detector as in the "Forward".

We only see the unaffected exponential muon

decay with  = 2.2 ms. tm

In most practical cases the data from a mSR
experiment  is displayed as the normalized

asymmetry   between Forward and Backward A(t)
positron counters. Here we see time-independent
A(t) close to (small polarization loss in beamline)

the theorethical value of 1/3.  

F(orward)

B(ackward)

tm
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Rota�ng the Muon Spin

Internal or external field (not // to S ) m

F(orward)

B(ackward)
tmPrecession of the muon spin

Probability for Backward or forward positron emission
is changing with time (Asym. always biggest at t = 0)

s

w

Relaxation rate: ® field-distribution width ( )
2 2 2s  = g ·<DB > DBm

 random dipoles (nuclear m.)Gaussian:
 dilute dipoles (spin glass)Lorentzian:

Frequency:  gives the magnetic field ( ) w = g ·B Bm

2 2 
A(t) = A ·exp( s t / 2 )·cos (wt + f)0
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Fourier / FFT

FFT

Time Frequency
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Fourier / FFT

FFT

Time Frequency
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Fourier / FFT

FFT

Time Frequency
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Different frequencies (FFT peaks) can also display different field-distributions (FFT peak widths),
which can give clear indications on details in the magnetic spin order and/or dynamics.
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Fourier / FFT
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Why do we get a set of distinct frequencies ???
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Muon Stopping Mechanism
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Muon Stopping Sites (in the la�ce of your sample)

Positive muons stop at potential minima in the crystallographic lattice, in oxides = close to Oxygen

Muon sites can not be measured but calculated to certain accuracy

Crystallographically identical sites could still be magnetically different (=multiple frequencies!)
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Local Magne�c Probe
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Local Magne�c Probe
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Local Magne�c Probe
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m⁺SR: Basic Idea

sm

q

a = 1
a = 1/3

+m

TIME [ms]

A
S

Y
M

M
E

T
R

Y
 [

%
]

Reveals how the spin-direction of the implanted muons is affected by the sample
i.e. muons are very sensitive local probes of static and/or dynamic internal fields !

B

Create 100% spin-polarized muons by shooting high-energy protons into a C-target

Implant the muons into a sample of choice (bulk or thin film)

The muons have a large gyromagnetic ratio (g). It’s spin start to Larmor-
precess in very small non-parallel internal magnetic/nuclear fields.

After an average time of 2.2 ms the muon decay into a positron,
preferentially emitted in the muon spin direction.

Measure the time and spatial distribution of emitted positrons =
Asymmetry (t) = muon spectra.
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Zero-Field (ZF) m⁺SR

No externally applied magnetic field

Study the evolution/relaxation of the muon polarization due to
internal static or dynamic magnetic fields / field-distribution

Extract temperature dependent
data:

n(T) : magnetic order parameter
l(T) : ~dynamics (relaxation)
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Very sensitive magnetic probe,
ordered moments down to
0.001 m  can be detected B

Above T  if only randomN

nuclear fields are present
® Kubo-Toyabe function
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Weak-Transverse Field (wTF) m⁺SR

Externally applied magnetic field perpendicular to the original muon spin direction

Muon precesses at a frequency that is proportional to the resulting field size at the muon
stopping site in the material

Commonly used to achieve a transition temperature (fast) and to calibrate "zero-level" (a) 
for the data

Study magnetic field distribution of vortex lattices in HTSC

Study magnetic Knight Shifts (fractional difference in local/external field)
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Longitudinal-Field (LF) m⁺SR

Externally applied magnetic field parallel to original muon spin direction

Distinguish between static and dynamic contributions via decoupling of static internal field

Decouple the magnetic order by “locking” the initial muon spin

T = 1.8 K

Time (ms)
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Muon Sources

ISIS
Science & Technology Facilities Council

Continuous
+ LEMContinuous

+ b-NMR

Pulsed
50 Hz

Pulsed 50 Hz
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Pulsed vs. Con�nuous Muon Source
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Pulsed vs. Con�nuous Muon Source
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Pulsed vs. Con�nuous Muon Source
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Pulsed vs. Con�nuous Muon Source
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Pulsed vs. Con�nuous Muon Source
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Pulsed vs. Con�nuous Muon Source

m
u

o
n

 f
lu

x

time

Continuous

m
u

o
n

 f
lu

x

time

Pulsed

ISIS
Science & Technology Facilities Council

Low flux = ‘One muon at the time’

Few positron detectors

Shorter total time window

Better time-resolution (high frequencies)

Study static magnetic order + fast dynamics

High flux = “many muons at the time”

100 positron detectors

Longer total time window

Low time-resolution (low frequencies)

Study magnetic dynamics, nuclear spins, etc.

Sample size 0.05 - 1 gram Sample size 0.3 - 2 gram
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Sample Condi�ons

General Purpose (1.5 - 300 K, 0 - 4000 G) Low-temperature (10 mK)

High-field (0 - 9.5 T) High-pressure (0 - 35 kbar)

+m +m+m

Muon beam

Piston

K₂Cr₈O₁₆ pressed
sample pellets

momentum scans

z 
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MP35N
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Low-Energy m⁺SR (LEM)

+A special sub-section of m SR is the LEM technique where slow muons are
utilized, which is only available at PSI (soon also J-PARC)

Open the door to studies of thin films (> ‘few’ nm) and multi-layers (< 500 nm)
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Multi-layer
sample

+m

TFM
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E = 24.25 keV
(center of film)
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E = 20 keV
E = 22.5 keV
E = 25 keV
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Muons have very different energy depending how they were created

By tuning the muon implantation depth one can study e.g. spin order in all the
individual layers  !!! including their interfaces
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Some Science Examples Covered by m⁺SR

Magnetic order + spin dynamics Charge Carrier Dynamics Superconductors

Ion-dynamics in energy materials Quantum Phase Transitions Polymer Dynamics
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Example #1
Quantum Phase Transi�on in PHCC

High-pressure Muon Spin Rota�on/Relaxa�on
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M. Thede, M. Mansson et al. Phys. Rev. Lett. 112, 087204 (2014)
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PHCC

‘Our' organometallic model compound of choice is Piperazinium

hexachloro-dicuprate or  = [C H N ][Cu Cl ]4 12 2 2 6PHCC

PHCC crystallizes in a triclinic P-1 space group.

Features a complex spin
2+

network of S = ½ , Cu

ions bridged by 8 possible

(3 frustrated) Cu-Cl-Cl-Cu
superexchange pathways.

Large single crystals (10´10´25 mm), m » 2 grams, fully deuterated.

Display a Cu-Cl sheets
spanning the ac-plane

Within the planes the Cu-ions seem to form slightly skewed spin-
ladders along the c-axis.

b

a

Pip az eer in

c

a

Cl
2+

Cu
(spin-½ ladders)

C / N

Samples
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PHCC: Spin Liquid

The magnetic excitation spectrum (INS) is dominated by a single

propagating mode with a clear singlet/triplet gap D = 1 meV and
magnon band-width of 1.8 meV in the (h 0 l) plane.

However, it’s clear that the mode has no dispersion along b* indi-
cating that neighboring a-c planes are magnetically decoupled.

Susceptibility data c(T) show an exponentially activated
dependence characteristic of a gapped Heisenberg
antiferromagnet (+ PM background).

PHCC does not order even at lowest temperature (e.g. no magnetic Bragg peaks)

Some information on exchange constants could be given but there
are up to 6 or even 8 possible exchange pathways so exact
Hamiltonian is unknown.

Ground state of PHCC is a quantum spin liquid

0
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hw
 [

m
e

V
]

M.B. Stone et al. Nature 440, 187 (2006)

INS
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Field-Induced Magne�c Order in PHCC

Susceptibility & specific heat show field-induced magnetic order in PHCC: 

H  » 7.5 T / T = 100 mK.c

Neutron diffraction experiments show that a long-range commensurate

AFM order is present  H.  ^  No signs of an incommensurate order !!!

At H = 14 T, order parameter typical for 2ⁿ� order phase transition T  = 3.7 K. N

For low H, specific heat increases at lower T = spin gap is decreasing.

Field-induced  Bose-Einstein
Condensation in PHCC

M.B. Stone et al. New J. Phys. 9, 31 (2006)
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PHCC: INS under Hydrosta�c Pressure

Tao Hong et al. performed INS under hydrostatic pressure
of  PHCC single crystals.

BEC can not only be induced by an external field but also
other exchange tuning e.g. pressure.

Show decreasing spin gap with P but signal weakens a lot.

Indicates a BEC for pure PHCC occuring at P  » 20 kbar.C

T. Hong et al.
Phys. Rev. B 82, 184424 (2010)
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Ambient Pressure m⁺SR

+To verify the ambient pressure properties using m SR we have conducted ZF and LF measurements of 

PHCC/X using the GPS and LTF spectrometers at PSI.
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ZF

LF = 25 G

LF = 50 G

PHCC @ LTF, T = 300 mK
(a)

ZF at T = 10 mK show clear absence of static
LRO and only an exponential decay i.e.
indication of either static SRO or spin
dynamics.

LF decoupling data clearly rules out SRO
and as expected PHCC/X show strongly
dynamical spins due to low-temperature
quantum fluctuations.
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PHCC @ p = 24 kbar

ZF mSR at P = 24 kbar and T = 270 mK show clear oscillations in
the time-spectrum, which is a clear sign of static magnetic order.
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Temperature dependent ZF data
reveal the order parameter
indicative of a second order
phase-transition.

Very first Pressure-
induced BEC in PHCC !!!

ZF and wTF data both clearly show a transition temperature T  = 4.9 K.N
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Systema�c P/T Data

We conducted systematic m⁺SR measurements as a function of both P & T.

Surprisingly (c.f. Tao Hong INS data!!!) we find that magnetic order is

already present for .P  > 4.3 kbarC

ZF data show a strong but ‘discontinuous’ P dependence on the H  sat

(muon frequency) and T .N

wTF data supports the
pressure dependence of

T . This allow us toN

deduce a tentative
P/T phase-diagram... 
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Tenta�ve P/T Phase Diagram
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Static Magnetic Order?

Combining ZF and wTF mSR data we can
construct a tentative phase diagram.

This clearly highlights the discontinuous
behavior in the vicinity of P = 14.5 kbar
and T = 2 K.

Data was reproduced using 3 different pure
PHCC sample-batches.
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Magne�cally Ordered Structure ?

By looking more in detail at the P-dependent ZF mSR data and
by careful fitting it is possible to reveal details on the magnetic
structure of PHCC. 

From tentative phase diagram it clearly looks like there are 

‘two parts’ separated by the P » 14.5 kbar region.

Fits for the ZF P = 6 kbar and P = 19.6 kbar data clearly show

a big difference in initial phase (f) of the mSR time spectra.

For the lower pressure region the phase strongly deviates
from zero, which is a clear indication for the presence of
an .incommensurate magnetic order

For pressures above 14.5 kbar f suddently drops to zero and remains so up to the highest investigated
pressure (24 kbar).

The 1D nature of the Cu-ions suggest the formation of a
helical spin structure.
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PHCC: Magne�c P/T Phase Diagram

We can now construct a more detailed
P/T phase diagram for PHCC.
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M. Thede, M. Mansson et al. Phys. Rev. Lett. 112, 087204 (2014)

At P  = 4.3 kbar a QCP point is presentC

where PHCC goes from being a gapped
quantum spin liquid into an incommen-

surate (IC) helimagnet with max T  = 3 K.N

At P = 13.4 kbar an IC to commensurate
(collinear AFM) transition occurs with
an associate Lifshitz point at finite
temperature. This is a multicritical
point where the PM phase meets the
two ordered phases.
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m⁺SR vs. INS ?!?!

Obvious question: why is estimate of P  so different by mSR and INS ???C

mSR show induced incommensurate magnetic order at low-P +

mSR is a Q-integrated experimental method.

The INS data by Tao Hong et al. 
could have missed a shift in Q of 
the minimum for the magnon 
dispersion to an IC position and 
hereby also missed the actual
closing of the gap and the phase
transition into a magnetically 
ordered state.

This could also explain why the INS 
intensity disappeared so quickly at 
low P.

Ql

Qk

D
P

QCP

0
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Example #2
Thin Film Superconductor Studied by LEM



As. Professor Mart in Månsson     -     KTH Royal Inst i tute of Technology     -     condmat@kth.se

LEM: Vortex Protocol

m
+SR has a long tradition in studying SC properties of bulk materials by

applying a TF through the sample, hereby inducing the vortex state.

z

Jeff E. Sonier, PhD Thesis, UBC (1998)

Vortices "spread out" close to the surface/interface. Such 
depth (z) dependence is uniquely studied using LEM @ PSI

Bext

"Vortex State"

The vortices result in a non-uniform
but "known" field-distribution /  s

Through T- / H-dependent data it is
possible to obtain information on
T  , , , ...C l D 

Soon also available at J-PARC using
the Ultra-Slow Muon Microscope
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LEM: Meissner Protocol

LEM is a unique technique where we can use the the ”Meissner” protocol to directly access 
the SC order parameter (London penetration depth).
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LiTi₂O₄
Lithium titanium oxide

"LTO"

LiTi O2 4

Cubic

Fd3m (227)

a = b = c = 8.41 Å
a = b = g = 90°

3
V = 594.72 Å
Z = 8
M = 166.70 g/mol

3r  = 3.72  g/cmtheor

TiO₂
LiLithium titanium oxide (LTO) has a cubic spinel structure.

LTO has also been shown to be the only known spinel
oxide superconductor.

Bulk samples of LTO display SC below T  » 12 K.c

Unfortunately, lack of high-quality single crystals has prevented
systematic investigations of LTO's SC properties.

The solution has been to grow 
thin LTO films using mainly PLD.

Using MgAl O  substrates a small2 4

strain is obtained, which stabilizes
the film  and "increases" T  as highc

as 13 K.
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Experimental Setup

For this experiment we prepared 4 films covering a
total area, .2

A = 22 ´ 22 mm
TFM

High-Voltage
Connec�on

22 mm

2
2
 m

m

Ni-coated
Al-plate

Low-T
Cryostat

2.5 - 300 K

(a) (b)

TFV

E = 24.25 keV
(center of film)
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Thickness of all 4 films were carefully calibrated 
and was nominally d = 220 nm

Films were attached to a Ni-coated Al plate using
Ag-paint. Plate was attached to the low-T cryostat.

TRIMSP software was used to calculate the muon
stopping profiles. E = 24.25 keV was found to 
correspond to the center of the film i.e. a muon
implantation depth z = 110 nm

These experiments were performed using the LEM
instrument of .PSI
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LiTi₂O₄, Meissner Data

LEM setup was chosen to collected in the
Meissner protocol using TF = 150 G // film
surface.
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Depth-resolved scans below T  (at T = 5 K) clearlyC

show a change in both relaxation rate and 
frequency.

Temperature dependent scans were also performed
in the center of the film (z = 110 nm) showing 
expected behaviour.

Data is extremely clean and can easily be fitted...
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Depth-resolved Results

From the fits it is possible to extract
the depth-dependent field.

'D
e

ad
 L

ay
e

r'
 (

n
o

n
-S

C
) 

»
 1

0
 n

m

B  » 150 Gapplied

B // surface

T = 5 K

l » 265 nm

m⁺ Implanta�on Depth [nm]

N
o

rm
al

iz
ed

 F
ie

ld
, B

/B
 [

ar
b

. u
n

it
s]

ex
t

1

0.98

0.96

0.94

0.99

0.97

0.95

0.93

1.01

0 50 100 150 200

'D
e

ad
 L

ay
e

r'
 (

n
o

n
-S

C
) 

»
 1

0
 n

m

Meissner Measurement as a
function of muon implantation depth

The results clearly show the expected
behavior and the London penetration
depth ( ) can be extracted.l

To obtain a reasonable fit to the data a 
10 nm "dead layer" is considered
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Lenght-/Time-Scales

For studying dynamics, muons are highly complementary to neutrons !!!
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Example #3
Ion Diffusion in a Ba�ery Cathode Material

TMO

TMO

+Li

+
m D,nD
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Ion Diffusion by m⁺SR

Muons are very sensitive probes of local internal fields

1
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In the paramagnetic state, muons feel mainly the random 
nuclear dipole fields (of Li) ® D

+ -
Implanted m  bind strongly to O  within the crystal lattice

If Li-ions are immobile the mSR time-spectrum is described
by a static  functionKubo-Toyabe

If ion-diffusion is present,
the muons will detect a
dynamic contribution to 
the dipole field.

Data is now described by a dynamic KT function that includes the
parameter field fluctuation rate = ion hopping rate (n)

From T-dependence n(T), the ion self-diffusion coefficient ( )Dion

can be extracted.
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Battery Cathode Materials

Li

CoO2

Layered structure (Li  TMO  Li  ...)// // //

2DT Cobalt lattice + Antiferromagn. interactions = frustrated magnet.

Tuning of x = tuning of conductionelectrons on the Co 2DTL

Archetypical Example: Li CoOx 2

Li CoOx 2 CoO  (x=0)2

Electrochemical
+

extraction of Li

Charging battery

Cathode materials is a crucial part 
for battery performance:

Show no magnetic order for temperatures above T  = 30 KN

¨ Low resistivity

 Safe / ’green’¨

 Low cost¨

¨ Stable crystal structure

 High Li-diffusion rate, DLi
¨

 High Li-density¨
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Li CoOx 2

Global fit ZF + 2 LF = robust determination of D and n. 

Perform T-dependent ZF/LF measurement and extract ...n(T)
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LF allow for separation of the electronic contrib./relaxation (fast PM 
fluctuations)

Using ARGUS instrument at ISIS pulsed muon source we collect

zero-field (ZF) + 2 longitudinal-field (LF = 5 and 10 G) m⁺SR spectra.

Al/Ti sample
powder cell

Gold O-ring
(sealing)

Pressed sample
pellet covered
by a 50 mm thin
Kapton window

Æ15 - 27 mm

2 g Li CoO  powder sample was pressed into a pellet & sealed in a0.73 2

Ti-cell under He atmosphere

Data was fitted by a dynamic KT ´ 
Exponent. relaxation with 3 parameters:

D = Field distribution (’STATIC’)

 = Hopping-rate n (’DYNAMIC’)

l = Electronic (PM) relaxation
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T-dependent Fitting Results

For T = 160-280 K, n show a strong exponential increase indicative of 
a thermally activated process. 

Diffusive motion of either Li-ions or m

D is more or less constant in same T-range, i.e. most likely Li-ion
diffusion. (m's create a strong bond to O in these TMO materials)

Above 280 K n(T) decreases and remains constant while D show a 
decrease possibly due to "motional narrowing".
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The activation energy (E ) can be extracted as .a E (Li) = 145 meVa

n(T) fits well to an .Arrhenius type equation

Indicate too fast Li-diffusion or possibly a phase transition or the 
onset of m diffusion?
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If we assume n to be direct measure of the jump rate of Li-ions

we can  express D  according to ( ) where  are theLi Equation Ni

number of Li jump paths in the i:th site,  is the vacancyZv,i
fraction and  is the jump distance.si

For Li CoO  ,  and , with n 0.73 2 Z  = 0.27 Z  = 1v,1 v,2

extracted from the mSR data.

As a result we obtain for Li CoO  that 0.73 2
-10 2

D  = 7×10  cm /s at T = 300 KLi

If we assume the same jump paths as in the first

principle calculations of D  of Li CoO , each LiLi x 2

has two possible paths within the Li-plane with  

N  = 6, s  =a, N  = 3 and s  = a /Ö31 1 2 2 .

n  ® DLi Li
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Li CoO  Final Resultsx 2

Obtained results are in excellent agreement with first principle calculations (T = 300 K)

Same procedure was been applied to Li CoO  and LiCoO  compositions with similar results.0.53 2 2

+We present SR as a novel and optimal probe for m

D   in compounds containing magnetic ions.Li
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Muon Technique Applied to Broad Range of Systems
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Summary

Neutron scattering is a very versatile & poweful experimental technique for
studying solid state physics, materials science, etc.

Tell us where atoms are and how spins align (elastic NS)
Tell us how atoms and spins move / excitations (inelastic NS)

Two combined techniques are always better than one :-)
+

If you need some assistance with m SR, please let me know!

Muons & Neutrons are covering complementary ranges of time/energy
(dynamics) as well as length-scales

Neutron & Muon sources are co-located making parallel measurements easy

Muons are in most cases a faster but a ‘limited’ technique
: what muons can do, they do REALLY well !!!BUT
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Time for a Coffee Break !!!
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